Mengolah jenis data numerik

Jenis data numerik adalah jenis data yang paling sering digunakan di dunia profesional, seperti yang telah saya pernah jelaskan pada posting saya sebelumnya pada jenis-jenis data, bahwa data numerik paling fleksibel untuk diolah dengan berbagai operasi matematika. Kita dapat mengurutkan, membandingkan dan membuat rasio dari dua data yang sifatnya numerik. Pada tulisan saya kali saya akan menampilkan beberapa penggunaan data numerik sehingga kita dapat mendapatkan  dan menyajikan informasi  dengan tepat.

Bagaimana menampilkan data numerik pada kalimat??

Saya sering membaca blog atau berita di surat kabar paling sering di skripsi/ thesis, dimana banyak sekali angka yang disebutkan. Jujur, saya terkadang merasa tenggelam didalam data yang begitu banyak. Saya tidak bisa menarik kesimpulan dari kalimat yang saya baca.

Salah satu cara untuk menyajikan data dalam sebuah narasi adalah gunakan maksimal dua data dalam satu narasi. Alasannya adalah sangat sederhana, karena otak sudah sangat terbiasa membandingkan dua hal (hitam-putih, panjang-pendek dll). Jika kita menyajikan tiga data pada satu narasi maka otak kita tetap akan membandingkannya dalam pasangan misalnya A, B dan C. Maka otak kita akan membuat perbandingan 3 kombinasi 2 (A-B, A-C, B-C). Jadi daripada membuat pembaca kita bingung, maka gunakan maksimal 2 data pada satu narasi.

Kapan menggunakan TABEL??

Sejak dulu sudah tak terhitung banyaknya data yang saya tampilkan menggunakan tabel, tapi belakangan saya berpikir kapan saat yang tepat menggunakan tabel?? Setelah membaca di beberapa tulisan master-master data, saya menyimpulkan bahwa jika kita:

  1. Anda mempunyai data yang relatif sedikit. lets say anda punya 100 data, dengan 2 dimensi. Maka lakukan pivot sederhana dengan excel, maka anda mendapatkan tabulasi yang mudah dan sederhana.
  2. Jika anda memperhatikan detail dari angka yang anda sajikan. Misalkan anda ingin menampilkan 3 angka dibelakang koma (2.596 dari pada dibulatkan menjadi 2.6), maka pilihan tabel akan memberikan fitur untuk menampilkan presisi angka tersebut.
  3. Salah satu teknik visualisasi data bukan hanya menunjukkan sesuatu tapi juga ‘tidak menunjukkan’. Salah satu contohnya adalah, jika anda tidak ingin menunjukkan secara jelas perbedaan profit perusahaan pertahun maka tabel akan menyamarkan perbedaan tersebut dengan sangat baik.

Menyajikan data dg Tabel tp Tetap sederhana?

Sering kali saya melihat penyajian presentasi data dengan menampilkan tabel, namun satu hal yang membuat saya tersiksa yakni TERLALU BANYAK ANGKA. Tidak adanya fokus pembahasan menyebabkan kita terjebak dalam persepsi bahwa semakin banyak data yang disampaikan maka semakin canggih dan sophisticated laporannya. Padahal TIDAK.

Pada kenyataannya para presenter handal dunia lebih suka menggunakan sedikit angka dan sedikit kata-kata dalam presentasinya. Adapun data yang disajikan lebih kepada CLUE untuk mempertajam STORY yang sedang mereka ceritakan.

Pertama. Identifikasi point penting yang ingin highlight.

Kedua. Identifikasi kecenderungan orang membaca data kolom atau baris?? Sebaiknya sih kategori letakkan di kolom sehingga lebih mudah dibandingkan (orang cenderung membandingkan kolom ke kolom).

Ketiga. Lakukan pembulatan sampai tingkat ketelitian yang dibutuhkan. Terlalu banyak angka dibelakang koma malahan akan menghilangkan makna sesungguhnya dari angka tersebut karena gagal fokus.

Keempat. Hindari penggunaan garis pemisah antara kolom dan garis secara berlebihan. Jangan sampai tabel anda benar-bener terlihat ‘excel-like’. Gunakan bold untuk highlight data yang anda ingin tekankan.

 

Advertisements

Percayakah anda 9 dari 10 wanita menggunakan *******?

iklanKalau saya sih lebih percaya 9 dari 10 iklan lebih banyak ngibulnya dari pada benernya. Atau saya lebih percaya dari 10 kali anggota DPR ngomong 9 kali mereka berbohong, 1 kalinya bercanda…hehe. Tapi bukan itu intinya. Tapi apakah arti sebenarnya dari angka 9 dari 10? Let see.

Jika anda adalah penikmat acara televisi tanah air, maka saya dapat memastikan anda juga penikmat iklan tv. Bagaimana tidak dari setiap 5 menit tayangan acara, maka 2-3 menit lainnya adalah iklan tv. Ya.. iklan merupakan porsi terbesar dari pemasukan televisi sekaligus cara yang paling ampuh bagi pemilik produk untuk menginformsikan kepada pemirsa tentang produk mereka. Berbagai jenis iklan digunakan untuk menanamkan ke benak pemirsa agar kemudian dapat menggunakan produknya.

Di datatalker, saya tidak akan membahas lebih jauh mengenai jenis iklannya tapi bagaimana data disalahgunakan oleh pihak-pihak yang semata-mata mengharapkan keuntungan dengan mengabaikan kebenaran.

Klaim 9 dari 10 wanita telah memilih produk A. Apa yang terlintas di benak anda? Bagi pemirsa yang awam konsep statistika/matematika maka secara sadar maupun tidak sadar akan cenderung berpikir 90% wanita di Indonesia menggunakan produk A. Benarkah demikian?? Ini yang tidak pernah atau tidak mau ditunjukkan dengan jujur oleh pembuat iklan:

  1. Klaim 9 dari 10 wanita Indonesia menggunakan produk A adalah TIDAK TEPAT.
  2. Klaim tersebut adalah hasil SURVEY, dimana hasil survey tergantung dari metode surveynya. Jika menggunakan diambil secara acak dari POPULASI dan metodenya BENAR, maka klaim tersebut dapat dibenarkan. Jika TIDAK maka klaim tersebut hanyalah KEBOHONGAN.
  3. Letak KESALAHAN FATALNYA adalah klaim wanita Indonesia (seluruh), padahal hanya sebagian wanita yang ikut survey dan TIDAK MEWAKILI seluruh WANITA (Populasi).

Menurut saya kalimat yang disampaikan haruslah tidak ambigu misalnya, 9 dari 10 wanita yang kami survey (purposive/random sampling) menggunakan produk A. Tapiii… apakah terdengar menarik?? Sepertinya kebohongan yang cantik lebih dipilih daripada kebenaran dengan muka pasaran.

Langkah-Langkah Analisa Data Part 1 Setengah masalah selesai dengan pertanyaan

Tidak ada hari tanpa excel dan data. Ini mungkin gambaran yang paling tepat untuk menggambarkan pekerjaan yang saya lakukan. Walaupun untuk mengekstrak datanya sudah ada SAS or MySQL dan untuk visualisasinya sudah pake Tableau, kemudahan pengolahan data excel emang paling T.O.P.

Seingat saya, waktu jaman kuliah juga gak terlepas dengan menggunakan excel, bikin tabulasi data survey, sekedar deskriptif stat sih gak ada masalah. Baru beberapa tahun ini aja kenal beberapa trik keren yang excel punya.

Sekarang ini katanya sih era BIG DATA, buat yang punya tools yang keren dan ngerti dikit API, mungkin ngerti dengan istilah ini. Tapi saya sendiri sih masih jarang gunain data ini, masih data-data yang ‘kecil’ dan terstruktur. Makanya saya share hal-hal basic aja dalam hal pengolahan data, hal biasa yang bisa sangat membantu hidup anda.

Sebelum anda melakukan analisa apapun pada data anda, hal yang anda paling butuhkan adalah identifikasi masalah apa yang anda ingin jawab dengan data yang anda miliki? Tulislah setiap pertanyaan yang anda miliki di kertas kerja anda. Jika saya mengatakan tulislah, maka jangan sungkan mencoret-coret kertas anda untuk menulis pertanyaan. Satu filosofi yang saya pegang adalah “jika anda sudah bisa membuat pertanyaan yang jelas dan akurat, anda sudah mengerjakan setengah pekerjaan anda”

Pernahkah ditanya manakah yang “lebih baik” samsung atau apple? Berapa penjualan kita bulan lalu? atau manakah yang harus saya pilih, beli rumah atau apartemen?

Dapatkah anda membedakan mana pertanyaan yang baik, mana yang tidak?

Jenis-Jenis Data (Penting nih…)

pusiing
Ingin tahu lebih banyak dr belajar bersama agar anda bisa bercerita dg DATA? 085776111946 (Rahmat)
Bagaimana?? Sudah cukup jelas perbedaan antara informasi dan data?? Selanjutnya saya akan memberikan penjelasan mengenai jenis-jenis data dan skala pengukuran.

Apa itu skala pengukuran? Menurut (socialresearchmethods.net) skala pengukuran itu adalah hubungan antara nilai-nilai yang diberikan atas atribut yang ada pada sebuah variabel. Mungkin dari definisi di atas saja belum cukup untuk menjelaskannya, jadi kita langsung lompat saja ke penjelasan rincinya.

tabel data

Penjelasan berikutnya akan berdasarkan tabel di atas. Pada kolom paling kiri terdapat dua tipe data yakni data kategorik dan data numerik. Penjelasannya mudah saja, data kategorik itu adalah data yang sifatnya hanya dapat dibedakan dan dapat diurutkan. Walaupun berbentuk angka, semua operasi matematika (penjumlahan, pengurangan dsb) tidak dapat dilakukan. Sedangkan data numerik merupakan data yang angka-angkanya dapat dilakukan operasi matematika dan hasilnya memiliki makna.

Untuk skala pengukurannya terletak pada kolom kedua, penjelasan rinci untuk ke empat skala pengukuran sebagai berikut:

Skala Nominal

Skala nominal merupakan skala pengukuran yang ciri-cirinya hanya dapat dibedakan dan tidak ada derajat yang lebih tinggi maupun lebih rendah. Misalnya gender (pria dan wanita), warna baju ( merah, kuning, hijau). Untuk mengingatnya cukup dengan tanda = dan ≠, artinya hanya sama atau tidak sama.

nominal

Skala Ordinal

Skala ordinal merupakan skala pengukuran yang ciri-cirinya dapat dibedakan dan juga dapat diurutkan, namun untuk skala pengukuran ini tidak dapat dijalankan operasi matematika seperti penjumlahan, pengurangan dsb. Misalnya ranking di kelas dan ukuran baju (S,M,L,XL), tanda operasi matematika nya yakni < atau >.

ordinal

Skala Interval

Skala interval merupakan skala pengukuran yang mudah dikenali yakni dengan ciri tidak adanya nol mutlak, artinya walaupun ada angka nol-nya itu tidak berarti kosong atau tidak ada, karena memang angka nol itu hanya merupakan kesepakatan. Selain itu, nilai-nilainya tidak dapat dibandingkan. Contohnya Temperatur, nol derajat celcius tidak berarti tidak ada panas dan suhu 100 derajat celcius tidak berarti dua kali lebih panas dibandingkan dengan suhu 50 derajat celcius. Operasi matematikanya adalah hanya sampai + dan -.
interval

Skala Rasio

Skala rasio merupakan skala yang paling sering kita temui dan gunakan, adanya angka nol mutlak dan nilainya dapat dibandingkan adalah ciri utama dari skala rasio ini. Beberapa contoh dari skala rasio adalah jumlah pasien yang berkunjung ke rumah sakit dan jarak tempuh dari sebuah kendaraan. Operasi matematika nya bisa semua,,, termasuk x (kali) dan : (bagi)

rasio

Mudah-mudahan penjelasannya bikin ngerti ya… klo blm ngerti tanya aja… 🙂